Non-degeneracy of Sobolev Pseudo-norms of fractional Brownian motion

نویسندگان

  • Yaozhong Hu
  • Fei Lu
  • David Nualart
چکیده

Applying an upper bound estimate for small L2 ball probability for fractional Brownian motion (fBm), we prove the non-degeneracy of Sobolev pseudo-norms of fBm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

A Variation Embedding Theorem and Applications

Fractional Sobolev spaces, also known as Besov or Slobodetzki spaces, arise in many areas of analysis, stochastic analysis in particular. We prove an embedding into certain q-variation spaces and discuss a few applications. First we show q-variation regularity of Cameron-Martin paths associated to fractional Brownian motion and other Volterra processes. This is useful, for instance, to establis...

متن کامل

Non-degeneracy of Wiener Functionals Arising from Rough Differential Equations

Abstract. Malliavin Calculus is about Sobolev-type regularity of functionals on Wiener space, the main example being the Itô map obtained by solving stochastic differential equations. Rough path analysis is about strong regularity of solution to (possibly stochastic) differential equations. We combine arguments of both theories and discuss existence of a density for solutions to stochastic diff...

متن کامل

Brownian and fractional Brownian stochastic currents via Malliavin calculus

By using Malliavin calculus and multiple Wiener-Itô integrals, we study the existence and the regularity of stochastic currents defined as Skorohod (divergence) integrals with respect to the Brownian motion and to the fractional Brownian motion. We consider also the multidimensional multiparameter case and we compare the regularity of the current as a distribution in negative Sobolev spaces wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013